HOLOMYCIN AND N-PROPIONYL-HOLOTHIN, ANTIBIOTICS PRODUCED BY A CEPHAMYCIN C PRODUCER

KAZUHIKO OKAMURA, KATSUYOSHI SOGA, YASUTAKA SHIMAUCHI and TOMOYUKI ISHIKURA

> Central Research Laboratories Sanraku Ocean Co., Ltd., Fujisawa, Kanagawa 251, Japan

JOSEPH LEIN

Panlabs, Inc., Fayetteville, New York 13066, U.S.A. (Received for publication December 3, 1976)

It was previously found that *Streptomyces* sp. P6621 which was isolated by us from soil produces cephamycin C.¹⁾ A nitrosoguanidine mutant of this culture designated P6621-7N49 was found to produce additionally two antibiotics which were extractable with *n*-butanol, not inactivated by β -lactamase of *Citrobacter freundii* and active against a β -lactamase-producing strain of *Serratia*

marcescens. After isolation and physico-chemical analysis, the new components were demonstrated to be holomycin and N-propionylholothin. Holomycin has been reported previously as a streptomyces product, while N-propionylholothin has been reported only as a chemical derivative.²⁰ This paper deals with isolation and identification of these two components.

One ml of spore suspension of Streptomyces sp. P6621-7N49 was inoculated into a 500-ml Erlenmeyer flask containing 100 ml of seed medium of the following composition: meat extract, 0.3%; Bacto-tryptone, 0.5%; glucose, 0.1%; soluble starch, 2.4%; yeast extract, 0.5%; soybean meal, 0.5% and CaCO₃, 0.5%. The pH was adjusted to 6.8 prior to sterilization. One ml of the seed culture was transferred after 48 hours to a series of 500-ml Erlenmeyer flasks containing 100 ml of production medium having the following composition: glucose, 0.5%; soluble starch, 2.0%; casamino acids, 1.0%; soybean meal, 1.5%; $MgSO_4 \cdot 7H_2O$, 0.05% and $CaCO_3$ 0.5%. The pH was adjusted to 7.0 prior to sterilization. Incubation was carried out for two days at 28°C

Fig. 2. Mass spectra of holomycin and N-propionylholothin.

Fig. 3. Structure of N-acylholothins.

R: CH₃CO Holomycin CH₃CH₂CO N-Propionylholothin

on a rotary shaker (200 rpm, eccentricity 70 mm).

The mycelium was removed by filtration. Five liters of broth filtrate were extracted twice with two liters of *n*-butanol and the extract was concentrated to dryness *in vacuo* to give a yellow powder. The yellow powder was dissolved in a small amount of methanol and subjected to Sephadex LH-20 column chromatography. After elution with methanol the yellow colored fractions were collected and concentrated to dryness to yield yellow crystals.

When a methanol solution of the yellow crystals was developed on a TLC plate (Merck Silicagel 60 F_{254}) with benzene - acetone (1:1), two yellow spots were recognized and designated factor 1 (Rf 0.31) and factor 2 (Rf 0.25) respectively. After preparative thin-layer chromatography and recrystallization in methanol, 3.0 mg of factor 1 was obtained and 25 mg of factor 2. Factor 2 was in the form of orange yellow prisms and was identified as holomycin on the basis of the following data.

Mp: $> 300^{\circ}C$ (lit.²⁾ 264 \sim 271°C), UV spectrum: λ_{\max}^{MeOH} nm (log ε); 246 (3.81), 302 (3.49), 388 (4.05). PMR (100 MHz, DMSO-d₆) δ : 2.03 (3H, s, $CH_{3}CO_{-}$), 7.05 (1H, s, >C=CH_{-}), 9.86 (1H, s, -CONH-), 10.68 (1H, s, -CONH-). Mass spectrum: m/e 214 (M⁺), 172 (M⁺-CH₂CO, base peak) and 43 (CH₃CO⁺). High resolution mass spectrum: m/e 213.9877 (M⁺, 213.9870 calcd. for C7H6N2O2S2). Factor 1 was also in the form of orange yellow prism and identified as N-propionylholothin on the basis of the following data. Mp: 255~264°C (lit.²⁾ 250~260°C). UV spectrum: λ_{\max}^{MeOH} nm $(\log \varepsilon)$; 246 (3.89), 302 (3.63), 388 (4.16). Mass spectrum: m/e 228 (M^+) , 172 $(M^+ - C_2 H_4 CO)$, base peak), 57 $(C_2 H_5 - C_2 H_5)$ CO^+). High resolution mass spectrum: m/e228.0022 (M^+ , 228.0027 calcd. for $C_8H_8N_2O_2S_2$). IR spectra are shown in Fig. 1. Mass spectra and the mode of fragmentation of factors 1 and 2 are illustrated in Fig. 2 and the structure of holomycin and N-propionylholothin are shown in Fig. 3. N-Propionylholothin had been synthesized chemically but not reported before as the microbial product. The mutant 7N49 still produces about half the amount of cephamycin C as is produced by the parent strain which does not produce the holothins.

It is known that cephalosporin C is biologically synthesized from α -aminoadipic acid, cysteine, valine and acetate³⁾ and the nucleus of the antibiotic is derived from cysteine and valine.⁴⁾ From their structure it is considered likely that biosynthesis of the holothin also involves cysteine which decreases the pool available for cephamycin C biosynthesis and thus diminishes the level of cephamycin C produced.

Acknowledgement

The authors are greatly indebted to Prof. Y.

YAMADA, Tokyo College of Pharmacy, for his helpful advice.

References

- OKUMURA, Y.; K. OKAMURA, Y. FUKAGAWA, T. ISHIKURA, K. KOUNO & J. LEIN: Process for a producing antibiotic, 7-(5-amino-carboxyvaleramide)-3-carbamoyloxymethyl-7-methoxy-3cephem-4-carboxylic acid. Japan Kokai 76-110,097, Sept. 29, 1976
- ETTLINGER, L.; E. GÄUMANN, R. HÜTTER, W. KELLER-SCHIERLEIN, F. KRADOLFER, L. NEIPP, V. PROLOG & H. ZÄHNER: Stoffwechselprodukte von Actinomyceten, Holomycin. Helv. Chim. Acta 42: 563~569, 1959
- TROWN, P. W.; E. P. ABRAHAM & G. G. F. NEWTON: Incorporation of acetate into cephalosporin C. Biochem. J. 84: 157~161, 1962
- TROWN, P. W.; B. SMITH & E. P. ABRAHAM: Biosynthesis of cephalosporin C from amino acids. Biochem. J. 86: 284~291, 1963